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Abstract—Workflows play an important role in expressing and
executing scientific applications. In recent years, a variety of
computational sites and resources have emerged, and users often
have access to multiple resources that are geographically dis-
tributed. These computational sites are heterogeneous in nature
and performance of different tasks in a workflow varies from
one site to another. Additionally, users typically have a limited
resource allocation at each site. In such cases, judicious scheduling
strategy is required in order to map tasks in the workflow to
resources so that the workload is balanced among sites and the
overhead is minimized in data transfer. Most existing systems
either run the entire workflow in a single site or use naive
approaches to distribute the tasks across sites or leave it to the
user to optimize the allocation of tasks to distributed resources.
This results in a significant loss in productivity for a scientist. In
this paper, we propose a multi-site workflow scheduling technique
that uses performance models to predict the execution time on
different resources and dynamic probes to identify the achievable
network throughput between sites. We evaluate our approach
using real world applications in a distributed environment using
the Swift distributed execution framework and show that our
approach improves the execution time by up to 60% compared
to the default schedule.

I. INTRODUCTION

Large-scale scientific applications involve repetitive
communication-, data-, memory- or compute-intensive
tasks. These applications are often encoded as workflows in
order to improve productivity of a scientist, and deployed
on remote computational sites. The workflow engine must
then schedule tasks over available resources and manage
data movement among the tasks. In recent years, given the
increasing prevalence of computational sciences, these sites
have been significantly grown in number and size and have
diversified in terms of their underlying architecture. They
vary widely in system characteristics including raw compute
power, accelerators, per-node memory, file system throughput,
and performance of the networks. With such heterogeneity
among sites, different tasks within the same workflow may
perform better at different sites. Even in a single large
supercomputer, we are witnessing this heterogeneity both
at a node-level, as well as at a system level. In the latter
case, we now have systems where larger memory footprint
nodes are interconnected with compute intensive nodes via a
high-performance interconnect.

In addition to the issue of resource heterogeneity, users con-
front logistical constraints in using these systems including
allocation time and software compatibility. These users often

subscribe to a multitude of sites, spanning geographical re-
gions, connected through various types of networks. It is often
desired, therefore, to deploy a user application over multiple
sites in order to best utilize the resources collectively.

Unfortunately, the resource allocation in terms of time for
each site may be limited and the system configuration at
each site may be suited for some tasks but not others. These
constraints must be taken into account while scheduling these
workflows. Given these constraints in the environments and
dynamic nature of the network connecting these sites, it is not
trivial to compute a schedule that will optimally utilize the
resources across the various sites to achieve the best time-to-
solution for these workflows. An ideal scenario from a user’s
perspective is:

1) User constructs her workflow using a simple and
intuitive interface such as Galaxy [1].

2) User provides the list of resources that the user has
access to.

3) Workflow engine executes the workflow in an optimal
fashion by spreading the tasks of the workflow into
one or more distributed resources (provided by the
user in the previous step) without any intervention
from the user.

Our work here tackles #3 above and focuses specifically
on generating an optimal schedule for a given workflow.
We use the Swift framework [2] for distributed workflow
execution, an enhanced SKOPE framework [3] for workflow
performance modeling, and a network scheduling algorithm
for optimizing mapping between tasks and resources. Our
system takes the workflow description written in the form
of a Swift script and profiles different tasks in the workflow
on available resources to generate a workflow skeleton in
the format required by SKOPE (see Section III for details).
Using the workflow skeleton, SKOPE builds analytical models
about the data transfers between tasks, and empirical models
about performance scalability of tasks. It then constructs a job
graph describing the estimated computation and data transfer
according to the models. The job graph is used as inputs
to the scheduling algorithm, which generates an optimized
schedule by taking into account the performance scalability
of tasks and network condition between the relevant sites.
Eventually, the Swift framework executes the workflow using
the recommended schedule.

Although considerable work has been done over the last
decade on scientific workflow management systems [4]–[8]



and metascheduling systems [9]–[12], optimizing the execution
of workflows across heterogeneous resources at multiple geo-
graphically distributed sites has not received much attention.
Most metascheduling systems run the entire application or
workflow at a single site. Systems such as Swift [2] enables
the execution of various tasks of a workflow at different sites
but they do not have sophisticated scheduling algorithms to
optimize the execution of workflow across different sites. A
scheduling algorithm must take into account not only the
heterogeneous nature of the compute infrastructure at various
sites but also the network connectivity and load between
the computational sites and the data source(s) and sink(s).
Our goal is to develop better schedules for workflows across
geographically distributed resources. In this paper, we focus
on optimizing many-task workflows across sites.

Our specific contributions in this work are four-fold:

• Development of the notion of workflow skeletons to
capture, explore, analyze and model empirical work-
flow behavior with regard to dynamics of computation
and data movement.

• Formulation of an algorithm to explore and construct
an optimized schedule, according to the modeled
workflow behavior.

• Integration of the workflow skeleton and the schedul-
ing algorithm into a workflow deployment system.

• Demonstrate the effectiveness of our system using a
series of empirical workflow and task patterns and
real scientific applications on distributed compute re-
sources.

We show that our system significantly improves (up to 60%)
the execution time for various application workflows.

The remainder of the paper is organized as follows. Sec-
tion II presents an overview of Swift, a workflow expression
and execution framework, typical scheduling mechanisms and
SKOPE, a workload modeling framework. Section III presents
our optimized scheduling technique based on task-resource
adaptation according to workflow skeletons. Section IV de-
scribes our experimental setup. Section V presents an evalua-
tion of the proposed approach using real scientific workflows
over multiple sites with distinct characteristics. Section VI
discusses related work. Conclusions are drawn in Section VII.

II. BACKGROUND

In this section we introduce parallel workflow scripting, re-
source scheduling, and workload behavior modeling tech-
niques which forms the basis our work. First, we define the
terminologies used in this paper. A workflow is a well-defined
process that involves the execution of many programs. The
invocation of an individual program is referred to as a task.
These tasks may be dependent on each other or can run in
parallel. Tasks are dispatched to various sites in groups of
scheduling units, or jobs. Jobs define the granularity in which
the schedule maps tasks to resources. A job consists of one
or multiple tasks that correspond to the same program but
different input data.

A. Swift: Parallel Workflow Scripting

Swift is a scripting framework for parallel execution of ordi-
nary programs [13]. The Swift runtime contains a powerful
platform for running these user programs on a broad range of
computational infrastructures, such as clouds, grids, clusters,
and supercomputers out of the box. As the example in Fig-
ure 2(a) shows, in Swift, a user can define an array of files,
and use foreach loops to create a large number of implicitly
parallel tasks. Swift will then analyze the script and execute
tasks based on their dataflow; a task is executed only after any
of its dependent tasks finish.

Applications encoded as Swift scripts have been shown to ex-
ecute on multiple computational sites via Swift coasters [13]–
[15] mechanism which implements the pilot jobs paradigm.
The pilot job paradigm dispatches a pilot task to each of
the sites and measures the task completion rate. The task
completion rate for the corresponding task-site combination
then serves as an indicator to increase or decrease the number
of tasks assigned to each site. However, it does not distinguish
the latency in task execution from the overhead in data transfer.
Moreover, the number of tasks to be executed on each node
remains a global constant; it may starve some CPUs if the
number is too lowe, or thrash the shared cache or memory if
the number is too high. Therefore, the resulting schedule is
sub-optimal.

B. On Resource Scheduling

The resource and job scheduling problem is a classic NP-
hard problem [16]. It can be formally stated by resource
and job definitions, and the algorithms vary depending on
characteristics of resources and jobs. For instance, job-shop
scheduling [17] is for multiple independent jobs with varying
sizes and multiple homogeneous resources.

On the other hand, in the context of distributed computing, jobs
may have dependencies among them and take input data from
remote sites and send output to a different set of remote sites.
The sites themselves may also have a broad spectrum of system
architectures and capacities. In order for scheduling to take into
account all these factors, sophisticated algorithms are needed.
In this paper, we extend our previous linear programming
based scheduling algorithms [18] to incorporate performance
models as well as network and compute resources. In gen-
eral, scheduling algorithms considering several factors (e.g.,
network and compute resources) at the same time are termed
as joint scheduling algorithms [19], [20]. Joint scheduling
algorithms are advantageous for better performance while they
may need more sophisticated mechanisms and may lead to high
time complexities. Even though Many previous studies includ-
ing our work [18] have addressed these issues, many more
factors as described above are left unconsidered for reasons
such as time complexities. Our scheduling algorithms extended
for task performance models for multiple computation sites
are unique from the perspective of incorporating all factors
such as network and compute resources and site-specific task
performance models. In addition, model-driven job graphs will
be able to provide rich semantics for flexible and efficient
scheduling.



TABLE I. EXECUTION SITES AND THEIR CHARACTERISTICS

Site CPU Cores CPU Speed Usable Memory per Node Allocation Remarks
LCRC Blues 310X16=4960 2.60GHz 62.90 GB unlimited Early access, 35 jobs cap

XSEDE Stampede 6400X16=102400 2.70GHz 31.31 GB limited 50 jobs cap
XSEDE Trestles 324X32=10368 2.4GHz 63.2 GB limited unknown

RCC Midway 160X16=2560 2.60GHz 32.00 GB limited Institute-wide access

C. SKOPE: A Workload Behavior Modeling Framework

SKOPE (SKeleton framewOrk for Performance Exploration)
is a framework that helps users describe, model, and explore a
workload’s current and potential behavior [3]. It asks the user
to provide a description, called code skeleton, that identifies a
workload’s performance behavior including data flow, control
flow, and computational intensity. These behavioral properties
are intrinsic to the application and is agnostic of any system
hardware. They are interdependent; the control flow may
determine data access patterns, and data values may affect
control flow. Given different input data, they may result in di-
verse performance outcomes. They also reveal transformation
opportunities and help users understand how workloads may
interact with and adapt to emerging hardware. According to the
semantics and the structure in the code skeleton, the SKOPE
back-end explores various transformations, synthesizes perfor-
mance characteristics of each transformation, and evaluates the
transformation with various types of hardware models.

The workloads targeted by SKOPE include single-node and
MPI applications. In this work, we adopt and extend SKOPE
to model workflows with data transfers requirements. The
SKOPE front-end is extended with syntax and semantics to
describe files and computational tasks. The resulting code
skeleton is called the workflow skeleton. We further add a
back-end procedure that constructs job graphs from workload
skeletons.

III. MODEL-DRIVEN MULTISITE WORKFLOW
SCHEDULING

Fig. 1. Our conceptual framework for multi-site workflow scheduling.

In this section, we describe how we use modeling to schedule
a workflow on multiple sites. Figure 1 illustrates the overall
steps involved in our technique. User provides the workflow
either as a Swift script or using some other interface. In case of
latter, an approach such as [1] is used to obtain a Swift script.
In the Swift script, a workflow is represented as tasks, each of
which consumes or produces a number of files. From the Swift
script, we generate a performance property description of the
workflow, which includes tasks’ site-specific scaling and the
data dependency among them. Such a description is generated
in the form of our extended SKOPE language, and is referred
to as a workflow skeleton, or skeleton in short. This process
is done manually now but will be automated in the future.
User also provides the list of resources available to execute
the workflow. The skeleton then automatically generates a
job graph, where a job refers to one or more tasks of the
workflow grouped as a scheduling unit. Operating at the task
granularity may lead to scheduling algorithm taking a long
time to compute an optimal schedule. Given the NP complete
nature of the scheduling problem, it is necessary to reduce the
problem size and aggregate multiple tasks into one job. The
job graph depicts the jobs’ site-specific resource requirements
as well as the data flow among them. Such a job graph is
then used as input to a scheduling algorithm, which also takes
into account the resource graph that describes the underlying
properties at multiple sites and the network connecting them.
The output of the algorithm is an optimized mapping between
the job graph and the resource graph, which the scheduler then
uses to dispatch the jobs.

TABLE II. SYNTAX FOR WORKFLOW SKELETONS

Macros and Data Declarations
File type and size (in KB) :MyFile N

Constant definition :symbol = expr
Array of files :type array[N][M]

Variable def./assign var = expr
Variable range var name=begin:end(exclusive):stride

Control Flow Statements
Sequential for loop for var range {list of statements}

Parallel for loop forall list of var ranges {list of statements}
Branches if(conditional probability){list of statements}

else{list of statements}
Data Flow Statements

file input/load ld array[expri][exprj ]
file output/store st array[expri][exprj ]

Characteristic Statements
Run time (in sec.) comp T

Task description
Application definition def app(arg list){list of statements}

Application invocation call app(arg list)

A. Workflow Skeleton

A workflow skeleton has two specific purposes: (1) define
tasks; (2) identify data movements among tasks.

The syntax of a workflow skeleton is summarized in Table II.
Figure 2 presents an illustrative workflow from the geoscience
area involving ab initio simulations via the VASP [21] tool. In



Figure 2(a), shows the script for the workflow. Its skeleton is
listed in Figure 2(b). The skeleton is structured identically to its
original workflow script in terms of file types, task definitions,
and the control and data flow among the tasks. The size of
each type of file are summarized in lines 3-4 of the skeleton.

A skeleton is parsed by SKOPE into a data structure called
the block skeleton tree (BST). Figure 2(c) shows the BST
corresponding to the skeleton in Figure 2(b). Each node of the
BST corresponds to a statement in the skeleton. Statements
such as task definitions, loops, or branches may encapsulate
other statements, which in turn become the children nodes. The
loop boundaries and data access patterns can be determined
later by propagating input values.

To describe a task’s distinct behavior over various sites, the
user can represent the task’s skeleton as a switch statement.
Each of its case statements describes the task’s performance
model for the corresponding site. An example skeleton descrip-
tion of a task is demonstrated by lines 17-35 in Figure 2(b).
This performance model is then used by the scheduler to
determine how many tasks to assign to a node.

Given the high-level nature of workflows and the structural
similarity between workflow script and skeleton, generating
the workflow skeleton is straightforward and will be automated
in the future by a source-to-source translator. The major effort
in writing a workflow skeleton falls on profiling tasks over
available systems in order to obtain site-specific performance
models. For each task, we measure its single node execution
time when it is co-executed with multiple tasks, up to a point
where all computing resources (i.e., cores) on the same node
are exploited. We then apply quadratic curve fitting to obtain
an empirical performance model.

Since a typical workflow is repeatedly executed, such perfor-
mance information can be obtained from historical data, either
by explicit user measurement or by implicit profiling.

B. Procedural Job Graph Generation

The workflow skeleton produces a job graph as input to the
scheduling algorithm. A job graph is a DAG describing the
performance characteristics of each job and the data movement
among them. Figure 3 illustrates the job graph generated from
the workflow skeleton in Figure 2(b). In a job graph, nodes
refer to jobs and edges refer to data movements. Note that
the structure of the job graph is independent of the hardware
resources. Moreover, a node is annotated with the amount
of computation resources, or the execution time needed by
the corresponding task for each available system. An edge is
annotated by the amount of data that is transferred from the
source node to the sink node.

Note that a job is a scheduling unit that may refer to a
group of tasks. Grouping multiple tasks can be achieved by
simply transforming nested parallel for loops in the workflow
skeleton into a two level nested loop, where the inner loop
defines a job with a number of tasks, and the outer loop is sized
according to the desired number of jobs, which is a predefined
constant according to the available number of sites. In this
work, we adopt the heuristic where iterations of a parallel
for loop are grouped into a number of jobs no more than
10 times the number of sites. Such a granularity enables the

scheduler to balance the workloads among sites, and at the
same time does not lead to a significant overhead in probing
a large number of possibilities.

Fig. 3. Job graph for the workflow shown in Figure 2(a).

Generating a job graph from a workflow skeleton involves
four major steps. First, we decide the group size according
to the number of tasks and the number of sites. Second, we
obtain the data footprint for each job by aggregating the data
footprints for tasks within a group. Third, we construct the
data flow among dependent jobs. Finally, we derive a symbolic
expression to express the execution time of a job over different
systems; this also involves aggregating the execution time of
tasks within a group.

The key to our technique is data movement analysis, for which
we apply array section analysis using bounded regular section
(BRS) [22]. BRS has been conventionally used to study stencil
computation’s data access patterns within loops. It is adopted
in our study to analyze data access patterns over arrays of
files. In BRS, an array access can be regarded as a function
that maps a range of loop iterators to a set of elements over
the array. In this paper, we refer to the range of loop iterators
as a tile (T) and the set of accessed array elements as a pattern
(P). For example, suppose A is a 2-D array of files and a task
accesses A[r][c] in a nested for loop with two iterators, r and
c. The tile corresponding to the loop is denoted as T(r, c) =
{r : 〈rl : ru : rs〉; c : 〈cl : cu : cs〉}, where each of the
three components represents the lower bound, upper bound,
and stride, respectively. The overall pattern accessed within
this loop is denoted as A[〈rl : ru : rs〉][〈cl : cu : cs〉], which is
summarized by P(A[r][c],T(r, c)). Patterns can be intersected
and/or unioned.

To obtain the data footprint of a job, we identify its corre-
sponding node in the BST and obtain the tile T corresponding
to one iteration of all loops in its ancestor nodes (i.e., the
outer loops) and all iterations of its child nodes (i.e., the
inner loops). Given an access to a file array, A, we apply T to
obtain a pattern, P(A,T), which symbolically depicts the data
footprint of the job.

We then build the data flow among jobs. First, we scan all BST
nodes that correspond to jobs. Pairs of nodes producing and
consuming the same array of files become candidate depen-
dent jobs. Next, we perform intersection operations between
produced and consumed patterns to determine the exact pattern



Fig. 2. Illustrative workflow script (a), skeleton (b), and the corresponding block skeleton tree (BST) (c) for a pedagogical workflow related to a geoscience
application.

that caused the dependency. The size of the dependent patterns
is the amount of data movement associated with an edge in
the job graph.

Then, we derive the execution time of each job for different
systems. We simply traverse the BST of the code skeleton
once for each site; in each traversal, the switch statement is
evaluated, and its execution time for that particular site is
obtained. We then aggregate the per task execution time into
the per job execution time by multiplying it with the number
of tasks within a job.

The resulting job graph is output in the form of an adjacency
list. In addition, each node has two attributes, one is the number
of independent tasks within this job, and the other is the
performance modeling which estimates the execution time of
each job given the number of assigned cores. It is then passed
to the scheduler algorithm to generate an optimized mapping
among the jobs and resources.

C. Multisite Scheduling

The job graph provides a description about the requirement
and behavior of a workflow. In order for a scheduler to
recommend an optimized schedule, it requires knowledge
about the distributed compute resources where a workflow
is deployed. In particular, the knowledge includes available
compute nodes at each site, the number of cores per node, and
the network bandwidth amongst computation sites. We use a
resource graph to describe such information about underlying
distributed systems. Fig. 4 (a) illustrates an example of the
resource graph. Nodes and edges denote compute resources
and network paths among those resources. Even though a
network path can span multiple physical network links, we
use only one logical link between two sites because we cannot
setup paths at our discretion in these experiments. However,

if we have control over network path setup in connection-
oriented networks, a physical network topology can be used
as a resource graph so that our algorithm finds appropriate
network paths for data transfers. Fig. 4 (b) is the resource graph
corresponding to Table I. We ran disk-to-disk transfer probes
to identify the achievable throughput among our computation
sites.

Fig. 4. (a) Resource graph model (b) Resource graph in our experiments.

In this paper, we extend our joint scheduling algorithm [18]
that takes into account both compute resources and network
paths in order to incorporate site specific performance models.
Our previous work based on linear programming considers
network resources together with compute resources. In dis-
tributed workflow scheduling, data movement among sites
are not trivial, especially when the network resources are
not abundant. That means independent scheduling of compute
resource and network paths may not give a near optimal sched-
ule. Our previous work schedules workflows by converting
a scheduling problem into a network flow formulation, for
which there are well-known linear programming approaches.
However, these formulations lack task performance models
for heterogeneous compute resources. In order to schedule
workflows among multisite compute resources, a new notion
of task-resource affinity is proposed and incorporated into our
previous workflow scheduling algorithms. This is novel in a
sense that all factors including network and compute resources
and task performance models per site are incorporated into one
formulation.

We set the resource capacities, Cn, which represents computa-
tion power at site n, associated with nodes in Fig. 4. Note that
this capacity is used for a bandwidth of a link representing
a compute resource in our network flow formulation [18]. di



denotes the amount of compute resource that task i demands
and di is associated with task i. So di

Cs
represents how fast

a task demand, di, can be processed by compute resources at
site s, Cs. This is anlogous to a situation where di amount
of water flows through a water pipe with capacity Cs. Cs and
di are relative values. To describe that task i takes 1 second
at compute resource site s, we can assign either 100 or 10
to both of Cs and di. We have execution time of a task i on
site s, tis through performance modeling. Equation 1 is task-
resource affinity equation where CEs is a random variable of
the number of concurrently runnable tasks at site s. We assume
that we do not have a fixed reservation at computation site and
we know the probability of job execution from job queues. We
define task-resource affinity as tis

E(CEs)
. tis
E(CEs)

is the expected
run time per task if multiple tasks are run at computation site
s. For example, if 10 same parallel tasks are run at a site that
can run 10 tasks at the same time, the expected run time per
task is one tenth of the task’s run time.

tis
E(CEs)

=
di
Cs

(1)

Equation 1 means task-resource affinity equals di

Cs
, which is

the runtime of task i at site s. We can thus set Cs for a
computation resource site with fewest computation resource
to 100. Then for each task, we can get di and assign this to
the corresponding task in the workflow. To compute Cn, when
n 6= s, we can use Equation 2, where T is a set of tasks.
Since Cn can be arbitrary values relative to di according to
Equation 1, we should normalize Cn regarding the base case
by Equation 2.

Cn = 100× 1

|T |
∑
i∈T

tis
tin
· E(CEn)

E(CEs)
(2)

Equation 2 averages affinities of tasks to resources. We can
easily extend our model such that resource affinity per task is
considered. For instance, while t1 can be executed two times
faster on site 1 than on site 2, t2 may have similar execution
times regardless of sites. We can define dis representing the
demand of task i at site s so that we can assign different
demands of tasks per resource to the edges of the auxiliary
graph. [18]

On the other hand, our scheduler combined with intelligent
SKOPE job graph generation can achieve better performance.
A job in a job graph that SKOPE provides to schedulers may
correspond to multiple parallel tasks and is a basic scheduling
unit. Previously, partitioning techniques for multiple same-
level tasks, called task clustering [23], groups all the tasks
into fixed number of partitions (e.g., 2 or 4) with the same
number of tasks to reduce scheduling overhead or task queue
wait time. The SKOPE job graph generator may provide as
many parallel jobs in a job graph as the number of available
computation sites. In this way, our scheduler can maximize
parallel execution of jobs according to the current resource
environment while static task clustering as in [23] would not
utilize idle resources.

IV. EXPERIMENTAL SETUP

In this section we introduce the application and computation
sites used in our experiments.

A. Application Characteristics

a) Synthetic Workflow: We use a synthetic application consist-
ing of various computation and memory intensive tasks. The
computation intensive task is matrix multiplication while the
memory intensive tasks are array summation, scale, and triad
operations from the stream benchmarks [24]. The graph shown
in Figure 5 shows the overall data flow of synthetic workflow.
The application consists of a total of 255 tasks.

Fig. 5. The synthetic application workflow representation

b) Image Reconstruction: The Advanced Photon Source (APS)
at Argonne National Laboratory provides the Western Hemi-
spheres most brilliant X-ray beams for research. Typically,
during the experiments, the data generated at the beamlines
is typically moved to a local HPC cluster for quasi real-time
processing through a LAN. At the end of the experiments,
raw and processed data is moved to the users home institution
typically over a WAN. The science workflows at APS is
changing in nature rapidly as a result of double exponential
growth in both detector resolution and experiment repetition
rate. As data volumes increase, we see increased need to use
remote computation facilities to process and analyze the data.
For example, a near-real-time analysis of a few terabytes of
APS data at a remote compute cluster at Pacific Northwest
National Laboratory was done recently. In our experiments,
we use a downsized APS application consisting of two tasks,
a raw image reconstruction task and an image analysis task,
which are both compute-intensive tasks and can be distributed
among remote computation sites. Fig. 6 shows an APS 3D
volume which can be obtained through 2D slice images
reconstructed from raw tomography data at computation sites
in our experiments. We also assume a workflow in which ten
datasets are generated by ten experiments performed at X-ray
beamlines (note that there are more than 60 beamlines at APS)
and will be processed using remote computation sites.

c) PowerGrid: The electrical power prices in a region are a
result of combination of many stochastic and temporal factors,
including variation in supply and demand due to market, social,
and environmental factors. Evaluating the feasibility of future
generation power grid networks and renewable energy sources
requires modeling and simulation of this complex system.
In particular, the power grid application described here is
used to statistically infer the changes in the unit commitment
prices with respect to small variations in random factors.
The application involves running a stochastic model for a
large number of elements generated via a three-level nested



Fig. 6. APS 3D volume image reconstructed from raw tomography data.

foreach loop. A numerical algorithm is run to compute
lower and upper bounds, which converge for large enough
samples. A moderate sample size of five samples can generate
hundreds of thousands of tasks. Each task makes call to the
Python-implemented sample generation and AMPL models
making it an interlanguage implementation spanning Python
and AMPL interpreters, as depicted in Fig. 7.

Fig. 7. Electrical power price analysis application components: tasks and a
plot showing convergence of upper and lower bounds for large sample sizes.

B. Computation Sites

We used four execution sites–XSEDE’s Stampede and Trestles
clusters, Argonne’s Laboratory Computing Resource Center
(LCRC) cluster ‘Blues’ and University of Chicago Research
Computing Center (RCC) cluster ‘Midway’ to evaluate our
approach. A summarized characterization of these four sites is
tabulated in Table I.

XSEDE (www.xsede.org) is an NSF-funded, national cyberin-
frastructure comprising multiple large-scale computation sys-
tems on sites across the United States. Stampede is one of
the supercomputing systems offered by XSEDE. Stampede
runs the SLURM scheduler for submitting user jobs. Similarly,
Trestles is another supercomputing environment offered by
XSEDE. It consists of 324 compute nodes and over 100
TFlop/s of peak performance. It employs a PBS based resource
manager.

LCRC Blues (www.lcrc.anl.gov/about/blues) is a recently-
acquired cluster available to science users at the Argonne Na-
tional Laboratory. The Blues cluster is a new system recently
put in production mode. Blues runs the PBS scheduler.

RCC Midway (rcc.uchicago.edu) is the University of Chicago
Research Computing Center cluster supporting University wide
high-end computational needs. The cluster has multiple re-
source partitionings dedicated to specialized computing such
as HPC, HTC and GPU computing and runs a SLURM batch
queue scheduler.

V. EVALUATION

In this section we present an evaluation of our approach. We
use the ‘synthetic’, ‘powergrid’ and ‘image reconstruction’
application workflows encoded in Swift. We submit the ap-
plication workflows to four sites (Blues, Midway, Stampede
and Trestles) from a remote machine (located outside of the
network domains of the clusters), where all input data resides.
We first gather data needed to build empirical performance
models. To do so, we conduct a pilot run, where we allocate
one node for each site and execute each task on each site,
with different number of tasks per node. This measures the
execution time of a task when there are other tasks running
on other cores of the same node. Figure 8 shows one such
set of measurements on each site for the powergrid workflow.
This provides the node-level weak scaling trend for each task.
We use quadratic curve fitting and generate a scaling model,
which is incorporated into the workflow skeleton.

Fig. 8. Profiled single-node weak scaling for the PowerGrid workflow on
different sites.

In the first set of experiments, we use the default scheduler
in Swift and merely tune a configuration parameter, “throttle”,
which controls the number of parallel jobs to send to sites and
hence the number of parallel data transfers to sites. The default
scheduler distributes an equal number of jobs to each of the
execution sites.

In the second set of experiments, we alter the Swift configura-
tion and distribute the jobs according to a schedule proposed
by our scheme. We plot the execution trace log in order to
generate a cumulative task completion plot as shown in fig-
ures 9, 10, 11, 12. The plot labeled ‘baseline’ and ‘enhanced’
show cumulative task completion with default and proposed
schemes respectively. We notice an initial poor performance
(especially figure 10) as the schedule starts acquiring resources
via local resource managers which rapidly improves as the
resources become available on remote sites. We note a sharp
and steady increase in task completion for short tasks as seen in



most of the synthetic workflow. On the other hand, a steps-like
plot is seen in the case of compute intensive APS workflow of
figure 12. Similarly the poor performance of default scheme
can be attributed to ramping up of jobs at sites with poor
affinity for those jobs and/or a lower bandwidth to carry data
to the site once the bandwidths are saturated by initial rampup.

It can be noted from the results in figures 9, 10, 11, 12, we
achieve a shorter makespan with an informed schedule and
save the effort for the users to fine tune the performance in the
default Swift schedule. In complex and large real workflows
interfaced with multiple remote sites, such fine tuning will
consume a lot of time or even impossible. Our scheme achieves
up to 60% improvement in makespan over the default scheme.
This is possible because of the following key decisions taken
by our schedule:

1) Accounts for both computational and data movement
characteristics of tasks and capacities of resources.

2) Steers computation according to a proactive plan
based on task-resource affinity.

3) Groups tasks into chunks to send out to sites ensuring
load-balancing from the beginning of execution.

Fig. 9. Synthetic workflow performance with a load of 255 tasks.

VI. RELATED WORK

Large scale applications have been shown to benefit sig-
nificantly on heterogeneous systems [25] for data-intensive
science [26] and under multiple sites infrastructure [27], [28].
We demonstrate the value of these arguments in a realistic
scenario. There has also been much prior work on workflow
management and performance modeling, which we discuss
below.

A. Workflow Management

Some of the well-known workflow management systems in-
clude Condor DAGMan [29], Pegasus [5], Taverna [4] and
makeflow [30]. Condor DAGMan provides a set of keywords
for directed acyclic graph (DAG)-based workflows. The work-
flow model of Condor DAGMan does not require additional
information other than task precedence requirements given

Fig. 10. PowerGrid workflow performance for a small sample size resulting
in 65 tasks.

Fig. 11. PowerGrid workflow performance for a large sample size resulting
in 127 tasks.

by a DAG. Pegasus requires task execution time information
related to each task in a workflow. Condor DAGMan is capable
of best-efforts batch-mode scheduling while Pegasus deploy
heuristics such as heterogeneous-earliest-finish-time (HEFT),
considering task execution time and/or data transfer times.

Our work differ from those previous work in two aspects.
First, our scheduler takes into account the variance of task’s
execution time over different sites and resource affinity among
the tasks.

HEFT or other heuristics use averaged execution times of a
task over every possible resource or try earliest/latest comple-
tion task first approach. These heuristics do not consider the
resource affinity per task effectively, and performance would
be worse combined with data transfer requirements. Second,
instead of having users manually measure tasks’ execution
time and data transfer overhead for individual schedules, we
model the relationships between a schedule and its resulting
task execution time and data transfer overhead. As a result,



Fig. 12. APS application performance with a load of 20 tasks.

we can project the overall time-to-solution without executing
each possible schedule, which may not be feasible.

Simulation studies on multi-site resources have been done
in the past such as Workflowsim [31] on generic wide-scale
environments and more recently on European Grids [32].
While they provide detailed analysis of workflow deployment,
simulations often take a significant amount of time to emerge
with and accurate picture of real-world scenarios and tend to
lag behind in mapping the new architectures.

Overall, our approach based on workflow skeleton captures
the application characteristics while offloading the execution
responsibility to Swift which leads to a better division of
responsibility. This approach makes our work distinct and a
valuable contribution to parallel and distributed processing
community.

B. Performance Modeling

Performance modeling has been widely used to analyze and
optimize workload performance. Application or hardware spe-
cific models have been used in many scenarios to study
workload performance and to guide application optimiza-
tions [33], [34], where applications are usually run at a small
scale to obtain knowledge about the execution overhead and
their performance scaling. Snavely et al. developed a general
modeling frameworks [35] that combine hardware signatures
and application characteristics to determine the latency and
overlapping of computation and data movement. An alternative
approach uses black-box regression, where the workload is
executed or simulated over systems with different settings,
to establish connections between system parameters and run
time performance [36]–[39]. All the above techniques target
computational kernels and parallel applications.

SKOPE [3] provides a generic framework to model workload
behavior. It has been used to explore code transformations
when porting computational kernels to emerging parallel hard-
ware [40], [41]. We apply the same principles in modeling
kernels and parallel applications and extend SKOPE to model
workflows. In particular, we propose workflow skeletons and

use that to generate task graphs, which are in turn used to
manage workflow.

VII. CONCLUSION

In this paper, we propose a multi-site scheduling approach
for scientific workflows using performance modeling. We
introduce the notion of workflow skeletons and extended the
SKOPE framework to capture, analyze and model the com-
putational and data movement characteristics of workflows.
We develop a resource and job aware scheduling algorithm
that utilizes the job graph generated using the workflow
skeleton and the resource graph generated using the resource
description. We incorporate our approach into Swift, a script-
based parallel workflow execution framework. We evaluate our
approach using real-world applications in image reconstruction
for an experimental light-source and for modeling of power-
grid in a multi-site environment. Our approach improves the
total execution time of the workflows by as much as 60%.
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